banner

gvhjg

Number System (Binary,Decimal,Octal,Hexa-Decimal): Definition, Types, Conversion & Examples Part-2

Hexadecimal Number System: Definition, Types, Conversion & Examples

Hexadecimal Number System
Hexadecimal Number System

Hexadecimal Number System: Definition

The base of the hexadecimal number is 16. Its digits range from 0-9 and A-F. 

For Example- (2BCF3)16 is the hexadecimal number system, and the subscript 16 at the end of this number indicates the base of the number. 

The table below gives the hexadecimal numbers and their equivalents in decimal and binary forms.

Decimal

Hexadecimal

Binary

0

0

0000

1

1

0001

2

2

0010

3

3

0011

4

4

0100

5

5

0101

6

6

0110

7

7

0111

8

8

1000

9

9

1001

10

A

1010

11

B

1011

12

C

1100

13

D

1101

14

E

1110

15

F

1111


Hexadecimal Number System: Conversions

     1.   Hexadecimal to Binary:

Convert each hexadecimal number to its 4-bit binary number. Refer to the table to find the equivalent binary number. The same procedure for the fractional part was also followed.

Example-   A3FE.2E16 = ( )2

Solution:    

A          3         F        E     .     2        E

010    0011   1111   1110   .  0010   1110

The equivalent binary number is (1010001111111110.00101110)2.


     2.   Binary to Hexadecimal:

To convert a binary number to hexadecimal, make 4-bit binary groups towards the left and right sides of the binary point.

Add binary digit 0 at each point to complete the 4-bit binary group; if necessary, after forming the groups, replace each group of 4-bit binary numbers with its hexadecimal equivalent (as shown in the table mentioned above).

Example:         (0011.1100)2 = ( )16.

Solution:                        0011   .       1100

Hexadecimal digit:         3        .           C

Hexadecimal equivalent is (3.C)16.


     3.   Hexadecimal to Decimal:

Multiply each hexadecimal digit by its positional value and add resultant values of all the digits.

Example-         (CF3D.241)16 = ( )10.

Solution:

Digit:   C      F      3       D   .     2     4     1

Value:    C*163+F*162+3*161+D*160+2*16-1+4*16-2 +1*16-3            =12*163+15*162+48+13*160+0.124+0.0156+0.0002
=49152+3840+48+16+0.124+0.0156+0.0002
=53053.139810

Equivalent decimal number is (53053.1398)10.


 4.   Decimal to Hexadecimal:

To convert the integer part of the number, use the method of successive division by 16 until the remainder becomes 0(zero). The obtained result is then read in reverse order to obtain the hexadecimal equivalent of a decimal number.

For conversion of the fractional part of the decimal number, use the method of successive multiplication by 16. The Carry so obtained is read in the forward order to obtain the hexadecimal equivalent of a decimal number.

Example:         (3580.25)10 = ( )16?

Solution:

For Integer Part

Decimal to Hexadecimal
Decimal to Hexadecimal

The equivalent hexadecimal number is DFC.

For fractional Part:

Product

 

Carry

0.25*16=4.00

And a carry of

4

Hexadecimal fraction is 4.

If greater accuracy is desired, the process of successive multiplication can be continued further.

The hexadecimal equivalent is (DFC.4)16.


     5.   Octal to Hexadecimal:

First, convert octal number to decimal number and then convert decimal number to octal number.

Example: (32.2)8 = ( )16?

Octal digit:  3     2   .       2

Decimal:     3*81+2*80+2*8-1

                 = 24+2+2*0.125

                 =26+0.250

                 = (26.25)10.

Decimal to Hexadecimal:

For Integer Part:

Quotient

 

Remainder

26÷16=1

Yielding a remainder of

1

1÷16=0

Yielding a remainder of

0

For fractional Part:

Product

 

Carry

0.25*16=4.00

And a carry of

4

Hence Hexadecimal equivalent is (1A.4)16.


     6.   Hexadecimal to Octal:

First, convert Hexadecimal number to decimal number and then convert decimal number to octal.

Example:         (29.4)16 = ( )8?

Hexadecimal digit: 2      9      .       4

Decimal:                 2*161+9*160+4*16-1

                                    =32+9+4*0.062

                               =41+0.248

                               = (41.248)10.

Decimal to octal:

For Integer Part:

Quotient

 

Remainder

41÷8=5

Yielding a remainder of

1

5÷8=0

Yielding a remainder of

5

For fractional Part:

Product

 

Carry

0.248*8=1.984

And a carry of

1

0.984*8=7.872

And a carry of

7

0.872*8=6.976

And a carry of

6

Hence octal equivalent is (51.176)8.

Previous Post
No Comment
Add Comment
comment url

Ads show adx